Экзопланеты
Для начала поймем, что же это за планеты. Экзопланета - планета, находящаяся за пределами Солнечной системы (греческая приставка «экзо» означает «вне», «снаружи»), альтернативный термин – внесолнечная планета (extra solar planet). Планеты чрезвычайно малы и тусклы по сравнению со звёздами, а сами звёзды находятся далеко от Солнца (ближайшая — на расстоянии 4,22 световых года). Поэтому долгое время задача обнаружения планет возле других звёзд была неразрешимой.
Впервые такие планеты были обнаружены косвенно в 1990-х годах по слабому «покачиванию» звезд, вокруг которых они обращаются. К середине 2001 планетные системы были открыты у 58 близких к Солнцу звезд и двух радиопульсаров, причем в некоторых случаях обнаружены системы из нескольких планет, однако до сих пор ни одну из них не удалось непосредственно наблюдать и исследовать. Точное измерение движений звезды позволяет оценить массы наиболее крупных членов ее планетной системы и параметры их орбит. Не исключено, что некоторые экзопланеты не входят в околозвездные системы, подобные Солнечной системе, а движутся в межзвездном пространстве сами по себе.
Первое достоверное сообщение о наблюдении планеты, расположенной близ другой звезды, прозвучало в конце 1995 года. Всего через десять лет за это достижение была вручена «Нобелевская премия Востока» — награда сэра Ран Ран Шоу (Run Run Shaw). Гонконгский медиа-магнат уже третий год дарит по одному миллиону долларов ученым, достигшим особых успехов в астрономии, математике и науках о жизни, включая медицину. Лауреатами 2005 года по астрономии стали Мишель Майор из Женевского университета (Швейцария) и Джеффри Марси из Университета Калифорнии в Беркли (США), получившие премию на торжественной церемонии в Гонконге из рук самого ее учредителя — 98-летнего господина Шоу. За время, прошедшее после обнаружения первой экзопланеты, исследовательские группы, возглавляемые этими учеными, открыли десятки новых удаленных планет, причем на долю американских астрономов во главе с Марси пришлось 70 из первых 100 открытий. Этим они взяли своего рода реванш у швейцарской группы Майора, которая в 1995 году на два месяца опередила американцев с сообщением о самой первой экзопланете.
Технология идентификации
Первым разглядеть в телескоп планеты возле других звезд пытался голландский математик и астроном Христиан Гюйгенс еще в XVII веке. Однако он ничего не смог найти, поскольку эти объекты не видны даже в мощные современные телескопы. Находятся они невероятно далеко от наблюдателя, размеры их по сравнению со звездами невелики, отраженный свет — слабый. И, наконец, расположены они близко от своей родной звезды. Вот почему при наблюдениях с Земли заметен лишь ее яркий свет, а тусклые точки экзопланет просто «тонут» в его сиянии. Из-за этого планеты за пределами Солнечной системы долгое время оставались нераспознанными.
В 1995 году астрономы Мишель Майор и Дидье Келос из Женевского университета, проводя наблюдения на обсерватории Верхнего Прованса во Франции, впервые достоверно зафиксировали экзопланету. С помощью сверхточного спектрометра они обнаружили, что звезда 51 в созвездии Пегаса «покачивается» с периодом чуть более четырех земных суток. (Планета, обращаясь вокруг звезды, раскачивает ее своим гравитационным воздействием, в результате чего из-за эффекта Доплера можно наблюдать смещение спектра звезды.) Вскоре это открытие подтвердили и американские астрономы Джеффри Марси и Пол Батлер. В дальнейшем этим же методом анализа периодических изменений спектров звезд было обнаружено еще 180 экзопланет. Несколько планет было найдено так называемым фотометрическим методом — по периодическому изменению яркости звезды, когда планета оказывается между звездой и наблюдателем. Именно такой метод используется для поиска экзопланет на французском спутнике COROT, а также на американской станции Kepler.
Станция Кеплер
До сих пор нет надежной теории, объясняющей, каким образом формируются планетные системы звезд. На этот счет имеются лишь научные гипотезы. Наиболее распространенная из них предполагает, что Солнце и планеты возникли из единого газово-пылевого облака — вращающейся космической туманности. От латинского слова nebula («туманность») эта гипотеза получила название «небулярной». Как ни странно, она имеет довольно солидный возраст — два с половиной века. Начало современным представлениям о формировании планет было положено в 1755 году, когда в Кенигсберге вышла из печати книга «Всеобщая естественная история и теория неба». Она принадлежала перу безвестного 31-летнего выпускника Кенигсбергского университета Иммануила Канта, который был в то время домашним учителем у детей помещиков и преподавал в университете. Весьма вероятно, что идею происхождения планет из пылевого облака Кант почерпнул из книги, выпущенной в 1749 году шведским писателем-мистиком Эмануэлем Сведенборгом (1688—1772), который высказал гипотезу (по его словам, рассказанную ему ангелами) об образовании звезд в результате вихревого движения вещества космической туманности. Во всяком случае, известно, что довольно дорогую книгу Сведенборга, в которой излагалась эта гипотеза, купили лишь три частных лица, одним из которых был Кант. Впоследствии Кант прославится как родоначальник немецкой классической философии.
А вот книга о небе осталась малоизвестной, поскольку ее издатель вскоре обанкротился и почти весь тираж остался нераспроданным. Тем не менее гипотеза Канта о возникновении планет из пылевого облака — первоначального Хаоса — оказалась очень живучей и в последующие времена послужила основой для многих теоретических рассуждений. В 1796 году французский математик и астроном Пьер-Симон Лаплас, судя по всему незнакомый с работой Канта, выдвинул похожую гипотезу формирования планет Солнечной системы из газового облака и дал ее математическое обоснование. С тех пор гипотеза Канта — Лапласа стала ведущей космогонической гипотезой, объясняющей, как произошли наше Солнце и планеты. Представления о газово-пылевом зарождении Солнца и планет в последующем уточнялись и дополнялись в соответствии с новыми сведениями о свойствах и строении материи.
Сегодня предполагают, что формирование Солнца и планет началось около 10 миллиардов лет назад. Исходное облако состояло на 3/4 из водорода и на 1/4 из гелия, а доля всех остальных химических элементов была ничтожно малой. Вращающееся облако постепенно сжималось под действием сил гравитации. В его центре сосредоточилась основная масса вещества, которая постепенно уплотнилась до такого состояния, что началась термоядерная реакция с выделением большого количества тепла и света, то есть вспыхнула звезда — наше Солнце. Остатки газово-пылевого облака, вращаясь вокруг него, постепенно приобрели форму плоского диска. В нем стали возникать сгустки более плотного вещества, которые за миллиарды лет «слепились» в планеты. Причем сначала возникли планеты рядом с Солнцем. Это были сравнительно небольшие образования с высокой плотностью — железокаменные и каменные сферы — планеты земного типа. После этого в более удаленной от Солнца области сформировались планеты-гиганты, состоящие в основном из газов. Таким образом, исходный пылевой диск перестал существовать, превратившись в планетную систему. Несколько лет назад появилась гипотеза геолога академика А.А. Маракушева, по которой предполагается, что планеты земного типа в прошлом также были окружены обширными газовыми оболочками и выглядели как планеты-гиганты. Постепенно эти газы были унесены в окраинные области Солнечной системы, а близ Солнца остались лишь твердые ядра бывших планет-гигантов, которые и являются теперь планетами земного типа. Эта гипотеза перекликается с новейшими данными об экзопланетах, представляющих собой газовые шары, расположенные очень близко от своих звезд. Возможно, в будущем под влиянием нагрева и потоков звездного ветра (высокоскоростных частиц плазмы, испускаемых светилом) они тоже потеряют мощные атмосферы и превратятся в двойников Земли, Венеры и Марса.
Экзопланеты весьма необычны. Одни движутся по сильно вытянутым орбитам, что приводит к существенным изменениям температуры, другие из-за чрезвычайно близкого расположения к светилу постоянно раскалены до +1 200°С. Есть экзопланеты, делающие полный оборот вокруг своей звезды всего за двое земных суток, настолько быстро они движутся по своим орбитам. Над некоторыми сияют сразу два и даже три «солнца» — эти планеты вращаются вокруг звезд, входящих в систему из двух или трех светил, расположенных близко друг к другу. Столь разнообразные свойства экзопланет на первых порах просто ошеломили астрономов. Пришлось пересмотреть многие устоявшиеся теоретические модели образования планетных систем, ведь современные представления о формировании планет из протопланетного облака вещества основаны на особенностях строения Солнечной системы. Считается, что в наиболее жаркой области вблизи Солнца остались тугоплавкие материалы — металлы и каменные породы, из которых образовались планеты земного типа. Газы улетучились в более прохладную, удаленную область, где и сконденсировались в планеты-гиганты. Часть газов, которая оказалась на самом краю, в наиболее холодной области, превратилась в лед, сформировав множество крошечных планетоидов. Однако среди экзопланет наблюдается совсем иная картина: газовые гиганты расположены почти вплотную к своим звездам.
Большинство обнаруженных экзопланет являются гигантскими газовыми шарами, подобными Юпитеру, с типичной массой около 100 масс Земли. Их около 170, то есть 90% от общего количества. Среди них различают пять разновидностей. Наиболее распространены «водные гиганты», названные так из-за того, что, судя по расстоянию от звезды, их температура должна быть такой же, как на Земле. Поэтому естественно ожидать, что они окутаны облаками из водяного пара или ледяных кристаллов. А в целом эти 54 прохладных «водных гиганта» должны иметь вид голубовато-белых шаров. Следующими по распространенности идут 42 «горячих Юпитера». Они находятся совсем близко от своих звезд (в 10 раз ближе, чем Земля от Солнца), и поэтому их температура — от +700 до +1 200°С. Предполагается, что атмосфера у них коричневато-багрового цвета с темными полосами облаков из графитовой пыли. Немного прохладнее на 37 экзопланетах с атмосферой синевато-сиреневого оттенка, названных «теплыми Юпитерами», температура которых от +200 до +600°С. В еще более прохладных областях планетных систем расположены 19 «сернокислых гигантов». Предполагается, что они окутаны облачным покрывалом из капелек серной кислоты — таким, как на Венере. Соединения серы могут придавать этим планетам желтовато-белую окраску. Еще дальше от соответствующих звезд расположены уже упомянутые «водные гиганты», а в самых холодных областях находятся 13 «двойников Юпитера», которые по температуре аналогичны настоящему Юпитеру (от –100 до –200°С на внешней поверхности облачного слоя) и, наверное, выглядят примерно так же — с голубовато-белыми и бежевыми полосами облачности, в которые вкраплены белые и оранжевые пятна крупных вихрей.
Кроме гигантских газовых планет в последние два года найдено полтора десятка экзопланет поменьше. Они сравнимы по массе с «малыми гигантами» Солнечной системы — Ураном и Нептуном (от 6 до 20 масс Земли). Астрономы назвали этот тип «Нептунами». Среди них выделяются четыре разновидности. Наиболее часто встречаются «горячие Нептуны», их обнаружено девять. Они расположены очень близко к своим звездам и поэтому сильно нагреты. Найдено также два «холодных Нептуна», или «ледяных гиганта», — аналогичных Нептуну из Солнечной системы. Кроме того, к этому же типу отнесены и две «суперземли» — массивные планеты земного типа, не имеющие столь плотной и толстой атмосферы, как у планет-гигантов. Одна из «суперземель» считается «горячей», напоминающей по своим характеристикам планету Венера с весьма вероятной вулканической активностью. На другой же, «холодной», предполагают наличие водного океана, за что ее уже успели неофициально окрестить Океанидой. Вообще же экзопланеты пока не имеют собственных названий и обозначаются буквой латинского алфавита, добавляемой к номеру звезды, вокруг которой они вращаются. «Холодная суперземля» — наименьшая из экзопланет. Ее открыли в 2005 году в результате совместных исследований 73 астрономов из 12 стран. Наблюдения велись на шести обсерваториях — в Чили, ЮАР, Австралии, Новой Зеландии и на Гавайских островах. От нас до этой планеты чрезвычайно далеко— 20 000 световых лет.
Наибольший интерес, конечно, вызывают те экзопланеты, на которых возможно существование жизни. Чтобы целенаправленно начать искать в космосе «братьев по разуму», надо сначала найти планету с твердой поверхностью, на которой гипотетически они могли бы жить. Вряд ли инопланетяне летают внутри атмосфер газовых гигантов или плавают в глубинах океанов. Кроме твердой поверхности нужны еще и комфортная температура, а также отсутствие вредных излучений, несовместимых с жизнью (по крайней мере, с известными нам формами жизни). Пригодными для обитания считаются такие планеты, где есть вода. Поэтому средняя температура на их поверхности должна быть около 0°С (она может существенно отклоняться от этой величины, но не превышать +100°С). Например, средняя температура на поверхности Земли +15°С, а размах колебаний от –90 до +60°С. Области космоса с условиями, благоприятными для развития жизни в том виде, который известен нам на Земле, астрономы называют «зонами обитания». Планеты земного типа и их спутники, находящиеся в таких зонах, — это наиболее вероятные места проявления внеземных форм жизни. Возникновение благоприятных условий возможно в тех случаях, когда планета располагается сразу в двух зонах обитания — в околозвездной и галактической.
Околозвездная зона обитания (иногда ее называют также «экосфера») — это воображаемая сферическая оболочка вокруг звезды, в пределах которой температура на поверхности планет допускает наличие воды. Чем жарче звезда, тем дальше от нее находится такая зона. В нашей Солнечной системе такие условия есть только на Земле. Ближайшие к ней планеты, Венера и Марс, расположены как раз на границах этого слоя — Венера — на жаркой, а Марс — на холодной. Так что местоположение Земли весьма удачно. Окажись она ближе к Солнцу, океаны испарятся, а поверхность станет раскаленной пустыней. Дальше от Солнца — произойдет глобальное оледенение и Земля превратится в морозную пустыню. Галактическая зона обитания представляет собой ту область пространства, которая безопасна для проявления жизни. Такая область должна находиться достаточно близко к центру галактики, чтобы содержать много тяжелых химических элементов, необходимых для формирования каменных планет. В то же время эта область должна быть на определенном удалении от центра галактики, чтобы избежать радиационных всплесков, возникающих при взрывах сверхновых звезд, а также — губительных столкновений с многочисленными кометами и астероидами, которые могут быть вызваны гравитационным воздействием блуждающих звезд. Наша Галактика, Млечный Путь, имеет зону обитания на расстоянии примерно 25 000 световых лет от своего центра. И вновь нам повезло с тем, что Солнечная система оказалась в подходящей области Млечного Пути, в которую входят, как считают астрономы, лишь около 5% от всех звезд нашей Галактики.
Будущие поиски планет земного типа возле других звезд, планируемые с помощью космических станций, нацелены именно на такие благоприятные для жизни области. Это позволит существенно ограничить зону поиска и даст надежду на обнаружение жизни вне Земли. Список из 5 000 наиболее перспективных звезд уже составлен. Первоочередному изучению будут подвергнуты окрестности 30 звезд из этого списка, расположение которых считается наиболее благоприятным для возникновения жизни.
По массе все планеты делятся на 3 типа: гиганты (такие, как Юпитер и Сатурн), нептуны (такие, как Уран и Нептун) и планеты земного типа, или земли (такие, как Земля и Венера). Граница между гигантами и нептунами проходит по линии появления в недрах планет металлического водорода (около 60 масс Земли или 0.19 масс Юпитера). Граница между нептунами и землями довольно условно проведена по 7 массам Земли (просто потому, что Уран с его 14 массами Земли - еще явный нептун, а Земля - уже явно планета земного типа). Возможно, в интервале 3-10 масс Земли существуют планеты, чьи свойства резко отличаются как от свойств нептунов, так и от свойств планет земного типа, но пока они реально не открыты, не будем умножать сущности сверх необходимых.
Между планетами-гигантами, с одной стороны, и нептунами, с другой, существует много важных отличий помимо массы. Так, химический состав планет-гигантов близок к звездному химическому составу, т.е. они состоят преимущественно из водорода и гелия с небольшой (несколько процентов) примесью тяжелых элементов. Нептуны же состоят в основном из льдов (водяного льда, метана, аммиака и сероводорода) с заметной примесью скальных пород (силикатов и алюмосиликатов), количество водорода и гелия в их составе не превышает 15-20%. Наконец, планеты земного типа лишены не только водорода и гелия, но в значительной степени и льдов, и состоят в основном из силикатов с примесью железа.
Просуммируем свойства планет в зависимости от их массы.
1. Планеты-гиганты, масса в интервале от 0.19 до 13 масс Юпитера. Отличаются почти звездным химическим составом, т.е. состоят в основном из водорода и гелия. Быстро вращаются. Из-за колоссального давления в недрах планеты водород переходит в металлическую фазу (или, другими словами, становится вырожденным). Радиус планет, начиная от 0.3 масс Юпитера и до границы коричневых карликов (13 масс Юпитера), близок к радиусу Юпитера, или примерно в 10-11 раз превышает радиус Земли. Исключение составляют т.н. "горячие юпитеры" - планеты-гиганты, расположенные близко к своей звезде и имеющие эффективную температуру выше 1000К. Сильно нагретая светом близкой звезды, их атмосфера расширяется, увеличивая видимый радиус планеты до 1-1.4 радиуса Юпитера. Средняя плотность гигантов меняется от 0.28 г/куб.см (самые разреженные горячие юпитеры) до 12 г/куб.см (самые массивные планеты-гиганты в 10-12 масс Юпитера). Вторая космическая скорость этих планет превышает 37 км/сек и составляет обычно 45-70 км/сек. Скорее всего, все планеты-гиганты имеют сильное магнитное поле, усиливающееся с ростом массы планеты.
В Солнечной системе планеты-гиганты - Юпитер и Сатурн.
2. Нептуны, масса в интервале от 7 до 60 масс Земли (0.022 - 0.19 масс Юпитера). Состоят большей частью из льдов (водяного, аммиачного, метанового, сероводородного) и скальных пород, составляющих примерно четверть полной массы планеты. Доля водорода и гелия в составе планеты не превышает 15-20%. Давление в недрах недостаточно для перехода водорода в металлическую фазу. Радиус близок к 4 радиусам Земли. Средняя плотность составляет 1.3-2.2 г/куб.см., вторая космическая скорость 18-30 км/сек. Магнитное поле сильно отличается от дипольного (например, планета может иметь два северных и два южных полюса).
В Солнечной системе нептуны - Уран и Нептун.
3. Планеты земного типа, масса меньше 7 масс Земли. Состоят в основном из силикатов (скальная компонента) и железа. Средняя плотность 3.5-6 г/куб.см. Радиус меньше 2 радиусов Земли.
В Солнечной системе планеты земного типа - Меркурий, Венера, Земля и Марс.
А теперь давайте посмотрим ТОП-10 найденных экзопланет.
Первая планета за пределами нашей Солнечной системы была обнаружена астрономами в 1989 году. Это была PSR 1257+12 b, которая обращалась вокруг пульсара. За прошедшее время большинство обнаруженных экзопланет - а их более 500 - оказалось так называемыми горячими юпитерами, то есть газовыми гигантами, многие из которых находятся на орбитах очень близко к родным звёздам. Однако это естественно, так как существующие методы поиска внесолнечных планет основаны либо на сверхточном измерении колебания звезды под действием гравитации планет (метод лучевых скоростей), либо на фиксации изменений яркости звезды в момент прохождения планеты перед её диском (транзитный метод).Итак, открыто уже более 500 внесолнечных миров, где нет абсолютно одинаковых планет. Но в этом и есть прелесть нашей Вселенной, радующей нас буйством разнообразия. Предлагаем вам познакомиться с десятью самыми интересными, по мнению редакции сайта kosmos-x.net.ru, экзопланетами, обнаруженными астрономами.
Gliese 581g. Иллюстрация Zina Deretsky, National Science.
Gliese 581g - вращающаяся вокруг звезды Gliese 581 на расстоянии около 20 световых лет от Земли планета. Gliese 581g находится в «обитаемой зоне», то есть на таком расстоянии от звезды, что получает нужное количество звёздной энергии для существования на ней воды в жидком виде. Некоторые астрономы считают, что система Gliese 581 имеет не четыре, а шесть планет.
Dubbed TrES-4 . Иллюстрация Jeffrey Hall, Lowell Observatory.
Dubbed TrES-4 – газовый гигант на расстоянии 1400 световых лет от нас, вращающийся по очень близкой к своей звезде орбите и совершающий полный оборот вокруг неё всего за три дня. Имея диаметр, превышающий в 1,7 раза оный Юпитера, Dubbed TrES-4 относится к классу «разбухших» планет, которые имеют чрезвычайно низкую плотность.
Ипсилон Эридана b. NASA, ESA, G.F. Benedict (University of Texas, Austin).
Ипсилон Эридана b - экзопланета, обнаруженная у подобной Солнцу звезды ипсилон Эридана, которая находится на расстоянии всего 10,5 световых лет от Земли. Это так близко к нам, что в скором времени астрономы смогут сфотографировать её. Ипсилон Эридана b расположена слишком далеко от своей звезды, чтобы там могла существовать жидкая вода, однако учёные полагают, что это не единственная планета в системе ипсилон Эридана - в жилой зоне вполне могут быть другие миры.
CoRoT-7b. Иллюстрация ESO/L. Calcada.
CoRoT-7b является первым обнаруженным скалистым миром за пределами нашей Солнечной системы. Хотя в действительности это настоящий ад. Планета, которая находится на расстоянии 400 световых лет от нас, имеет радиус почти в пять раз больше, чем у Земли, и относится к классу «суперземель». Она расположена на очень близкой к родной звезде орбите (0,0172 астрономической единицы), и период её обращения составляет около 20 часов. Температура на освещённой стороне планеты чрезвычайно высока: около 2000 °C.
HD 188753 Ab. Иллюстрация NASA/JPL's Planetquest/Caltech.
HD 188753 Ab - горячий газовый гигант, который ещё называют Татуин (вспомним фильм Дж. Лукаса «Звёздные войны»). Однако в отличие от восхитительного заката двух звёзд, который наблюдал юный Люк Скайуокер, на небосводе HD 188753 Ab можно увидеть три солнца, так как планета находится в системе трёх звезд на расстоянии примерно 149 световых лет от Земли. И ещё там довольно жарко, потому что она вращается очень близко к главной звезде, совершая оборот всего за 3,5 дня.
OGLE-2005-BLG-390L b. Иллюстрация ESO.
Экзопланета OGLE-2005-BLG-390L b с температурой поверхности -220 градусов °C является пока самым холодным миром из найденных астрономами. Имея диаметр в 5,5 раз больше, чем у Земли, OGLE-2005-BLG-390L B относится к классу «суперземель» и вращается по орбите вокруг красного карлика на расстоянии 28 000 световых лет от Земли.
WASP-12b. Иллюстрация ESA/NASA/Frederic Pont, Geneva University Observatory.
WASP-12b, как и большинство известных экзопланет, обнаруженных астрономами, является большим газообразным миром на расстоянии около 870 световых лет от Земли. Экзопланета почти в два раза больше Юпитера. WASP-12b вращается вокруг своей звезды на очень близком расстоянии - немногим более 1,5 миллиона километров - и является самой горячей планетой, с температурой поверхности около 2200 °C.
SWEEPS-10. Иллюстрация NASA.
SWEEPS-10 - экзопланета, имеющая самый малый период обращения вокруг звезды из известных учёным: один оборот она совершает всего за 10 часов. Находится на расстоянии около 22 000 световых лет от Земли.
Coku Tau 4. Иллюстрация NASA.
Coku Tau 4 – одна из самых молодых экзопланет, возраст которой составляет менее 1 миллиона лет. Она находится на расстоянии около 420 световых лет от Земли. Астрономы сделали вывод о существовании этой планеты, обнаружив дыру в пылевом диске, опоясывающем звезду. Дыра, размером в 10 раз превышающая Землю, вращается вокруг звезды и образуется, вероятно, вследствие вращения планеты, очищающей пространство вокруг себя от пыли и газа.
HD 209458 b. Иллюстрация NASA, ESA, and G. Bacon (STScI).
HD 209458 b (Озирис) – планета–комета, находящаяся на расстоянии 153 световых лет от Земли. Она весит чуть меньше Юпитера и совершает полный оборот вокруг звезды всего за 3,5 дня. У Озириса был обнаружен длинный шлейф из газа его же атмосферы. Анализ этого «хвоста» показал, что в нём присутствуют и лёгкие и тяжёлые элементы (такие как углерод и кремний). При этом температура атмосферы составляет около 1 226 градусов Цельсия. Это позволило учёным предположить, что планета до такой степени разогрета своей звездой, что даже тяжёлые элементы могут покидать её атмосферу.
Как же ищут такие планеты ?
Предположим, что наблюдатель находится у ближайшей к нам звезды Альфа Кентавра и смотрит в сторону Солнечной системы. Тогда наше Солнце будет сиять для него так же ярко, как звезда Вега на земном небосводе. А блеск планет окажется очень слабым: Юпитер будет «звездочкой» 23 звездной величины, Венера – 24 величины, а Земля и Сатурн – 25 величины. Вообще говоря, крупнейшие современные телескопы могли бы заметить такие слабые объекты, если бы на небе рядом с ними не было ярких звезд. Но для далекого наблюдателя Солнце всегда расположено рядом с планетами: для астронома с Альфы Кентавра угловое расстояние Юпитера от Солнца не превосходит 4 угловых секунд, а между Венерой и Солнцем всего 0,5 угл. сек. Для современных телескопов заметить предельно слабое светило так близко от яркой звезды – задача непосильная. Астрономы сейчас проектируют приборы, которые смогут решить эту задачу. Например, изображение яркой звезды можно закрыть специальным экраном, чтобы ее свет не мешал изучать находящуюся рядом планету. Такой прибор называют «звездным коронографом»; по конструкции он похож на солнечный внезатменный коронограф Лио. Другой метод предполагает «гашение» света звезды за счет эффекта интерференции ее световых лучей, собранных двумя или несколькими расположенными рядом телескопами – так называемым «звездным интерферометром». Поскольку звезда и расположенная рядом с ней планета наблюдаются в чуть разных направлениях, с помощью звездного интерферометра (изменяя расстояние между телескопами или правильно выбирая момент наблюдения) можно добиться почти полного гашения света звезды и, одновременно, усиления света планеты. Оба описанных прибора – коронограф и интерферометр – очень чувствительны к влиянию земной атмосферы, поэтому для успешной работы их, по-видимому, придется доставить на околоземную орбиту.
Есть еще такие методы, как
- Измерение яркости звезды
- Измерение положения звезды
- Измерение скорости звезды
- Астрометрический поиск
Поиском экзопланет сейчас занято более 150 астрономов на различных обсерваториях мира, включая самую продуктивную научную группу Дж.Марси и группу М.Майора. Для выработки терминологии и координации усилий в этой области Международный астрономический союз (МАС) создал Рабочую группу по внесолнечным планетам (см. http://www.ciw.edu/IAU/div3/wgesp/), первым руководителем которой избран американский астроном-теоретик Алан Бос (A.Boss). Предложена временная терминология, согласно которой «планетой» следует называть тело массой менее 13 Мю, обращающееся вокруг звезды солнечного типа; такие же объекты, но свободно движущиеся в межзвездном пространстве, следует называть «коричневыми субкарликами» (sub-brown dwarfs). Сейчас этот термин употребляется в отношении нескольких десятков предельно слабых объектов, найденных в 2000–2001 в туманности Ориона и не связанных со звездами. Они излучают в основном в инфракрасном диапазоне и по массе, вероятно, лежат в промежутке между коричневыми карликами и планетами-гигантами. Ничего определенного о них пока сказать нельзя.
В 2013 году по совместному проекту США, Канады и Европы планируется запуск крупного космического телескопа JWST (James Webb Space Telescope). Этот гигант с зеркалом диаметром 6 метров, носящий имя бывшего директора NASA, призван заменить ветерана космической астрономии — телескоп «Хаббл». В числе его задач будет и поиск планет вне Солнечной системы. В том же году предстоит запуск комплекса из двух автоматических станций TPF (Terrestrial Planet Finder — «Поисковик планет земного типа»), предназначенного исключительно для наблюдений за атмосферами экзопланет, сходных с нашей Землей. С помощью этой космической обсерватории намечено искать обитаемые планеты, анализируя спектры их газовых оболочек для выявления водяного пара, углекислого газа и озона — газов, указывающих на возможность жизни. Наконец, в 2015 году Европейское космическое агентство отправит в космос целую флотилию телескопов Darwin, предназначенных для поиска признаков жизни вне Солнечной системы путем анализа состава атмосфер экзопланет.
Если космические исследования экзопланет пойдут по намеченным планам, то уже лет через десять можно ожидать первых надежных известий о планетах, благоприятных для жизни — данных о составе атмосфер вокруг них и даже сведений о строении их поверхностей.
В целом обнаружение первых внесолнечных планетных систем стало одним из крупнейших научных достижений 20 столетия. Решена важнейшая проблема – Солнечная система не уникальна; формирование планет рядом со звездами – это закономерный этап их эволюции. В то же время становится ясно, что Солнечная система нетипична: ее планеты-гиганты, движущиеся по круговым орбитам вне «зоны жизни» (область умеренных температур вокруг Солнца), позволяют длительное время существовать в этой зоне планетам земного типа, одна из которых – Земля – имеет биосферу. По-видимому, другие планетные системы редко обладают этим качеством.
Текущий каталог экзопланет и информацию об их исследовании можно найти в Internet по адресам:
[media=http://www.youtube.com/watch?v=i
DrXz5uCT1o&feature=player_embedded]
DrXz5uCT1o&feature=player_embedded]
Пожалуйста оцените статью и поделитесь своим мнением в комментариях — это очень важно для нас!
Комментариев пока нет