Прозрачный алюминий
Новость о том, что ученые изобрели «прозрачный алюминий» (Transparent Aluminum Armor), не нова.
Однако говорить о том, что много кто знает об этой новости еще рано, поэтому сегодня почитайте об
этом интересном и получившем значительное практическое применение открытии.
Однако говорить о том, что много кто знает об этой новости еще рано, поэтому сегодня почитайте об
этом интересном и получившем значительное практическое применение открытии.
Открытие получило название AION или оксинитрид алюминия и является соединением алюминия, кислорода и азота, представляя собой прозрачную керамическую твердую массу, которая в четыре раза прочнее закаленного стекла. На данный момент выпускается под торговой маркой ALON.
Интересно, что кварц-оксинитрид алюминия, призван заменить довольно привычное пуленепробиваемое стекло. Однако на этом его функции не заканчиваются. Отполировав ALON, из него можно сделать стекло для иллюминатора, более того, его невозможно поцарапать привычными способами, а так же обладает отличной удароустойчивостью. При всех этих показателях, ALON вдвое легче и тоньше чем обычное бронестекло. Таким образом, ALON буквально ворвался сразу в несколько ниш и с каждым годом улучшает свои позиции.
Важно и то, что процесс производства ALON-а не является технологически «замудренным», что облегчает задачу производителей. Однако и дома его создать не получится, впрочем, что бы вы понимали, как происходит весь процесс создания оксинитрида алюминия, расскажем о нем.
1. Способ получения литого оксинитрида алюминия в режиме горения, включающий приготовление реакционной смеси исходных компонентов, содержащей оксид хрома VI, оксид алюминия, алюминий и нитрид алюминия, помещение реакционной смеси в реактор СВС в форме из тугоплавкого материала, выполненной из кварца, графита или нержавеющей стали, воспламенение смеси с последующим реагированием ее компонентов в режиме горения в газовой среде азота, или смеси азота с воздухом, или смеси азота с аргоном под давлением 0,1-10 МПа, после завершения синтеза целевой продукт в виде слитка оксинитрида алюминия отделяют от слитка алюминида хрома, при этом реакционную смесь готовят при следующем соотношении компонентов, мас.%
2. Способ по п.1, отличающийся тем, что между реакционной смесью компонентов и стенкой формы помещают функциональный слой из порошка оксинитрида алюминия.
На данный момент ALON начали использовать более многогранно, так, например, компаний Microsoft, занимаясь разработкой «умных часов», в корпусе своей разработки применяет именно оксинитрид алюминия. Так что, кто знает, быть может, даже изготовление алюминиевых конструкций с использованием ALON-а уже не за горами, однако о подобном можно мечтать лишь в случае снижения стоимости материала.
Инженеры из исследовательской лаборатории флота США разработали процесс изготовления прочной и недорогой замены стекла. Прозрачный материал делают при помощи низкотемпературного спекания из искусственно полученных кристаллов шпинели.
Шпинель – это смешанный оксид магния и алюминия, минерал, встречающийся в природе. В естественном виде он бывает разных цветов. Например, красная шпинель неотличима на глаз от рубина, поэтому раньше эти два минерала путали между собой. Одна из знаменитых драгоценностей британской короны, Рубин Чёрного Принца, на самом деле – шпинель.
Этот материал очень твёрдый, он способен сопротивляться ударным нагрузкам и истиранию при воздействии дождя, солёной воды или песка. Кроме того, он пропускает инфракрасное излучение, поэтому может пригодиться при изготовлении различных приборов. В отличие от стекла, материал не трескается по всей поверхности – вместо этого при ударном воздействии от него просто откалывается небольшой кусок. Конечное изделие можно полировать и отшлифовывать.
Ранее инженеры пытались получить этот материал при помощи высоких температур (2000 градусов и более). Но этот процесс был как дорогим из-за энергозатрат, так и неэффективным – необходимость отделять готовый материал от поверхности тигеля приводила к появлениям дефектов. При спекании используется горячий пресс, который делает из порошковой заготовки конечное поликристаллическое изделие.
Попытки изготовить большие панели из шпинели спеканием делались и раньше. Однако материал получался мутным, с небольшими островками прозрачности. Инженерам удалось усовершенствовать качество продукта, добавив в сырьё порядка 1% фторида лития, который, расплавляясь, работает как смазка, и позволяет кристаллам шпинели правильно выстраиваться друг относительно друга.
Сырьё для производства доступно в изобилии, что делает себестоимость изделий минимальной. Благодаря простоте технологии, из материала можно делать изделия любой формы. Возможности использования обширны: изогнутые окна (например, иллюминаторы для самолётов), линзы для приборов, стёкла часов, экраны смартфонов (прочнее, чем gorilla glass), линзы для камер и биноклей. Военные интересуются использованием этого материала в качестве прозрачной брони – по сравнению с современными пуленепробиваемыми стёклами вес готового изделия будет как минимум в 2 раза меньше.
Интересно, что кварц-оксинитрид алюминия, призван заменить довольно привычное пуленепробиваемое стекло. Однако на этом его функции не заканчиваются. Отполировав ALON, из него можно сделать стекло для иллюминатора, более того, его невозможно поцарапать привычными способами, а так же обладает отличной удароустойчивостью. При всех этих показателях, ALON вдвое легче и тоньше чем обычное бронестекло. Таким образом, ALON буквально ворвался сразу в несколько ниш и с каждым годом улучшает свои позиции.
Важно и то, что процесс производства ALON-а не является технологически «замудренным», что облегчает задачу производителей. Однако и дома его создать не получится, впрочем, что бы вы понимали, как происходит весь процесс создания оксинитрида алюминия, расскажем о нем.
1. Способ получения литого оксинитрида алюминия в режиме горения, включающий приготовление реакционной смеси исходных компонентов, содержащей оксид хрома VI, оксид алюминия, алюминий и нитрид алюминия, помещение реакционной смеси в реактор СВС в форме из тугоплавкого материала, выполненной из кварца, графита или нержавеющей стали, воспламенение смеси с последующим реагированием ее компонентов в режиме горения в газовой среде азота, или смеси азота с воздухом, или смеси азота с аргоном под давлением 0,1-10 МПа, после завершения синтеза целевой продукт в виде слитка оксинитрида алюминия отделяют от слитка алюминида хрома, при этом реакционную смесь готовят при следующем соотношении компонентов, мас.%
•Оксид хрома VI 37,3-41,0
•Алюминий 31,0-34,0
•Оксид алюминия 22,7-25,0
•Нитрид алюминия до 9,0
•Алюминий 31,0-34,0
•Оксид алюминия 22,7-25,0
•Нитрид алюминия до 9,0
2. Способ по п.1, отличающийся тем, что между реакционной смесью компонентов и стенкой формы помещают функциональный слой из порошка оксинитрида алюминия.
На данный момент ALON начали использовать более многогранно, так, например, компаний Microsoft, занимаясь разработкой «умных часов», в корпусе своей разработки применяет именно оксинитрид алюминия. Так что, кто знает, быть может, даже изготовление алюминиевых конструкций с использованием ALON-а уже не за горами, однако о подобном можно мечтать лишь в случае снижения стоимости материала.
Инженеры из исследовательской лаборатории флота США разработали процесс изготовления прочной и недорогой замены стекла. Прозрачный материал делают при помощи низкотемпературного спекания из искусственно полученных кристаллов шпинели.
Шпинель – это смешанный оксид магния и алюминия, минерал, встречающийся в природе. В естественном виде он бывает разных цветов. Например, красная шпинель неотличима на глаз от рубина, поэтому раньше эти два минерала путали между собой. Одна из знаменитых драгоценностей британской короны, Рубин Чёрного Принца, на самом деле – шпинель.
Этот материал очень твёрдый, он способен сопротивляться ударным нагрузкам и истиранию при воздействии дождя, солёной воды или песка. Кроме того, он пропускает инфракрасное излучение, поэтому может пригодиться при изготовлении различных приборов. В отличие от стекла, материал не трескается по всей поверхности – вместо этого при ударном воздействии от него просто откалывается небольшой кусок. Конечное изделие можно полировать и отшлифовывать.
Горячий пресс
Ранее инженеры пытались получить этот материал при помощи высоких температур (2000 градусов и более). Но этот процесс был как дорогим из-за энергозатрат, так и неэффективным – необходимость отделять готовый материал от поверхности тигеля приводила к появлениям дефектов. При спекании используется горячий пресс, который делает из порошковой заготовки конечное поликристаллическое изделие.
Попытки изготовить большие панели из шпинели спеканием делались и раньше. Однако материал получался мутным, с небольшими островками прозрачности. Инженерам удалось усовершенствовать качество продукта, добавив в сырьё порядка 1% фторида лития, который, расплавляясь, работает как смазка, и позволяет кристаллам шпинели правильно выстраиваться друг относительно друга.
Сырьё для производства доступно в изобилии, что делает себестоимость изделий минимальной. Благодаря простоте технологии, из материала можно делать изделия любой формы. Возможности использования обширны: изогнутые окна (например, иллюминаторы для самолётов), линзы для приборов, стёкла часов, экраны смартфонов (прочнее, чем gorilla glass), линзы для камер и биноклей. Военные интересуются использованием этого материала в качестве прозрачной брони – по сравнению с современными пуленепробиваемыми стёклами вес готового изделия будет как минимум в 2 раза меньше.
Комментарии3