Посетители
weaselПосетители
Основная информация
Имя:
Неизвестно
Возраст:
Не известен
Город:
Неизвестно
О себе:
This is a new rap on the oldest of stories -
Functors on abelian categories.
If the functor is left exact
You can derive it and that's a fact.
But first you must have enough injective
Objects in the category to stay active.
If that's the case - no time to loose;
Resolve injectively any way you choose.
Apply the functor and don't be sore -
The sequence ain't exact no more.
Here comes the part that is the most fun, Sir,
Take homology to get the answer.
On resolution it don't depend:
All are chain homotopy equivalent.
Hey, Mama, when your algebra shows a gap
Go over this Derived Functor Rap.
Functors on abelian categories.
If the functor is left exact
You can derive it and that's a fact.
But first you must have enough injective
Objects in the category to stay active.
If that's the case - no time to loose;
Resolve injectively any way you choose.
Apply the functor and don't be sore -
The sequence ain't exact no more.
Here comes the part that is the most fun, Sir,
Take homology to get the answer.
On resolution it don't depend:
All are chain homotopy equivalent.
Hey, Mama, when your algebra shows a gap
Go over this Derived Functor Rap.
Активность
Зарегистрирован:
29 декабря 2007, 11:54
Последний вход:
17 октября 2013, 18:41
Публикации:
Комментарии:
Карма:
39.6499
Место в рейтинге:
3372
Контакты
Связь через сайт:
Отправить ЛС
Email:
отправить e-mail