Мини-чат
Авторизация
Или авторизуйтесь через соц.сети
40
4
4
penrosa
На uCrazy 13 лет 5 месяцев
Всячина

Черный пояс по физике

сено


Объясняется это все явлением КАВИТАЦИИ.

Ролик и подробное описание под катом:

[media=http://www.youtube.com/watch?v=G
vSE7WGjHkA&feature=player_embedded]


Кавитация (от лат. cavitas — пустота), образование в капельной жидкости полостей, заполненных газом, паром или их смесью (так называемых кавитационных пузырьков, или каверн). Кавитационные пузырьки образуются в тех местах, где давление в жидкости становится ниже некоторого критического значения pkp (в реальной жидкости pkp приблизительно равно давлению насыщенного пара этой жидкости при данной температуре). Если понижение давления происходит вследствие больших местных скоростей в потоке движущейся капельной жидкости. то К. называют гидродинамической,. а если вследствие прохождения акустических волн — акустической.

Черный пояс по физике

рис. 1


Гидродинамическая кавитация. Поскольку в реальной жидкости всегда присутствуют мельчайшие пузырьки газа или пара, то, двигаясь с потоком и попадая в область давления р < ркр, они теряют устойчивость и приобретают способность к неограниченному росту (рис. 1). После перехода в зону повышенного давления и исчерпания кинетической энергии расширяющейся жидкости рост пузырька прекращается и он начинает сокращаться. Если пузырёк содержит достаточно много газа, то по достижении им минимального радиуса он восстанавливается и совершает нескольких циклов затухающих колебаний, а если газа мало, то пузырёк захлопывается полностью в первом периоде жизни. Т. о., вблизи обтекаемого тела (например, в трубе с местным сужением, рис. 2) создаётся довольно четко ограниченная "кавитационная зона", заполненная движущимися пузырьками.


рис.2


Сокращение кавитационного пузырька происходит с большой скоростью и сопровождается звуковым импульсом (своего рода гидравлическим ударом) тем более сильным, чем меньше газа содержит пузырёк. Если степень развития К. такова, что в случайные моменты времени возникает и захлопывается множество пузырьков, то явление сопровождается сильным шумом со сплошным спектром от нескольких сотен гц до сотен и тысяч кгц. Если кавитационная каверна замыкается вблизи от обтекаемого тела, то многократно повторяющиеся удары приводят к разрушению (к так называемой кавитационной эрозии) поверхности обтекаемого тела (лопастей гидротурбин, гребных винтов кораблей и др. гидротехнических устройств, рис. 3).


рис. 3 Гребной винт, разрушенный кавитацией


Если бы жидкость была идеально однородной, а поверхность твёрдого тела, с которым она граничит, идеально смачиваемой, то разрыв происходил бы при давлении, значительно более низком, чем давление насыщенного пара жидкости. Прочность на разрыв воды, вычисленная при учёте тепловых флуктуаций, равна 150 Мн/м2(1500 кг/см2). Реальные жидкости менее прочны. Максимальное растяжение тщательно очищенной воды, достигнутое при растяжении воды при 10 °С, составляет 28 Мн/м2 (280 кг/см2). Обычно же разрыв возникает при давлениях, лишь немного меньших давления насыщенного пара. Низкая прочность реальных жидкостей связана с наличием в них так называемых кавитационных зародышей: плохо смачиваемых участков твёрдого тела, твёрдых частиц с трещинами, заполненными газом, микроскопических газовых пузырьков, предохраняемых от растворения мономолекулярными органическими оболочками, ионных образований, возникающих под действием космических лучей.

При данной форме обтекаемого тела К. возникает при некотором, вполне определённом для данной точки потока, значении безразмерного параметра



где р — гидростатическое давление набегающего потока, рн — давление насыщенного пара, r — плотность жидкости, u¥— скорость жидкости на достаточном отдалении от тела. Этот параметр называют "числом кавитации", служит одним из критериев подобия при моделировании гидродинамических течений. Увеличение скорости потока после начала К. вызывает быстрое возрастание числа кавитационных пузырьков, вслед за чем происходит их объединение в общую кавитационную каверну, затем течение переходит в струйное (см. Струя).При этом течение сохраняет нестационарный характер только в области замыкания каверны. Особенно быстро струйное течение организуется в случае плохо обтекаемых тел.

Если внутрь каверны, через тело, около которого возникает К., подвести атмосферный воздух или иной газ, то размеры каверны увеличиваются. При этом установится течение, которое будет соответствовать числу кавитации, образованному уже не по насыщающему давлению водяного пара рн, а по давлению газа внутри каверны pk, т. е. . Всплывание такой кавитационной каверны будет определяться т. н. числом Фруда , где g — ускорение силы тяжести, a d — некоторый характерный линейный размер. Так как pk может быть много больше рн, то в таких условиях возможно при малых скоростях набегающего потока получать течения, соответствующие очень низким значениям c, т. е. глубоким степеням развития К. Так, при движении тела в воде со скоростью 6—10 м/сек можно получить его обтекание, соответствующее скоростям до 100 м/сек. Кавитационные течения, получающиеся в результате подвода газа внутрь каверны, называют искусственной К.

Гидродинамическая К. может сопровождаться рядом физико-химических эффектов, например искрообразованием и люминесценцией. В ряде работ обнаружено влияние электрического тока и магнитного поля на К., возникающую при обтекании цилиндра в гидродинамической трубе.

Исследование К. и борьба с ней имеют большое значение, так как К. оказывает вредное влияние на работу гидротурбин, жидкостных насосов, гребных винтов кораблей, подводных звукоизлучателей, жидкостных систем высотных самолётов и т.д., снижает коэффициент полезного действия и приводит к разрушениям. К. может быть уменьшена при увеличении гидростатического давления, например помещением устройства на достаточной глубине по отношению к свободной поверхности жидкости, а также подбором соответствующих форм элементов конструкции, при которых вредное влияние К. уменьшается. Для уменьшения эрозии лопасти рабочих колёс изготавливают из нержавеющих сталей и шлифуют.

Экспериментальные исследования К. производятся в так называемых кавитационных трубах, представляющих собой обычные гидродинамические трубы, оборудованные системой регулирования статического давления.

Литература: Корнфельд М., Упругость и прочность жидкостей, М. — Л., 1951; Биркгоф Г., Сарантонелло Э., Струи, следы и каверны, пер. с англ., М., 1964: Перник А. Д., Проблемы кавитации, 2 изд., Л., 1966; Ошеровский С. Х., Кавитация в генераторах, "Энергетика и электрификация", 1970, № 1.

Пожалуйста оцените статью и поделитесь своим мнением в комментариях — это очень важно для нас!

все теги
Поддержать uCrazy
Комментарии4
  1. макаренко
    На uCrazy 18 лет 8 месяцев
    Шелдон детектед
  2. paxan50
    На uCrazy 13 лет 10 дней
    не черный, а красный пояс у него.. у кого черный, тот *бошыт пузыри из под шампанского hi
  3. VITYAZ-V
    На uCrazy 12 лет 7 месяцев
    [media=http://www.youtube.com/watch?v=UjeZsz7Nwi4]
  4. PIKNIC15
    На uCrazy 12 лет 6 месяцев
    херня сколько раз пробывал не получалось !

{{PM_data.author}}

{{alertHeader}}